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Abstract

We describe a two-point spectral transport approach to the investigation of ¯uid instability,
generalized turbulence, and the interpenetration of ¯uids across an interface. The technique also
applies to a single ¯uid with large variations in density. Departures of ¯uctuating velocity components
from the local mean are far subsonic, but the mean Mach number can be large. This work is focused
on ¯ows with large variations in ¯uid density (e.g. two-®eld ¯uid interpenetration). The starting point
for analysis is the set of Navier±Stokes equations, for which we assume relevance in our
investigations, even in the presence of sharp density variations between ¯uids. Models for two-®eld
analysis with drag representations for momentum exchange can also be used and are discussed
previously. In this work departures from mean ¯ow are included in the stochastic concept of
turbulence. Reynolds decomposition into mean and ¯uctuating parts is carried out in the spirit of this
generalized concept, which is meaningful despite arbitrariness as to which scales are identi®ed as mean
¯ow and which are identi®ed as ¯uctuations. This spectral formulation motivates a novel description
of the global e�ects of pressure due to incompressibility. We discuss its derivation and the
modi®cations this `nonlocal' formulation has on the turbulence spectra. We also discuss the
consequences of spectral self-similarity exhibited by this model. This identi®cation of spectral self-
similarity in a circumstance of inhomogeneous, variable density turbulence is novel. # 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Turbulence occurs in many circumstances of ¯uid ¯ow, being driven or sustained by the
conversion of large-scale mean ¯ow energy to intermediate-scale ¯uctuations and dissipated by
the entropy-increasing process of cascade to small scales, ultimately to the molecular level
where it is manifested in the form of heat.
For a comprehensive overview of the evolution of turbulence modeling, the reader is referred

to Markatos (1986) and Launder and Spalding (1972). Additional comments on single-point,
second-order closures are given by Launder (1990). Once the Navier±Stokes equations are
decomposed into mean and ¯uctuating parts and ensemble averaged, the simplest way to close
the Reynolds stress tensor is to use a simple algebraic expression that relates the turbulence to
the mean ®eld. The most popular of these types of models are those that use Prandtl's mixing
length hypothesis (Anderson et al., 1984; Bradshaw et al., 1981). However, since these types of
models do not transport the turbulence variables, they quickly break down in situations with
¯ow transients and are only useful for ¯ows in which the total e�ect of the turbulence on the
mean ¯ow is small.
A single-point, two-equation K±E transport model for constant density ¯ows was ®rst

proposed by Harlow and Nakayama (1967, 1968). Variants of this model have been proposed
by other researchers, including Jones and Launder (1972, 1973), Chien (1982), and Nagano and
Hishida (1987). Other two-equation models exist such as models that transport the product of
K and a turbulent length scale instead of E (Ng and Spalding, 1972), and models that transport
the second moment of the vorticity ¯uctuation instead of E (Sa�man, 1970; Sa�man and
Wilcox, 1974; Ilgebusi and Spalding, 1985).
Second order, two-equation transport models (Rotta, 1951; Daly and Harlow, 1970; Hanjalic

and Launder, 1972) transport the full Rij tensor as opposed to only its trace, where K is equal
to half the trace of Rij. In contrast to the K±E turbulence model, transport of the full tensor
enables a more faithful description of anisotropic ¯ows. Variable density extensions to these
models (Besnard et al., 1987; Andronov et al., 1982) transport auxiliary terms such as a mass-
¯uxing velocity and a density-density correlation.
The multi-scale model of Hanjalic et al. (1980) transports Rij and E at both the energy

containing length scales and the energy cascade length scales. This approach uses multiple
length scales to represent the dynamics of the turbulent kinetic energy spectrum of ¯ows which
depart from spectral equilibrium.
In spectral turbulence transport models, an exact but unclosed Reynolds stress transport

equation is derived for two points in space. The equations are Fourier transformed with
respect to the separation variable and then angularly integrated in k-space. The resulting
formulation implicitly contains length scales associated with turbulence, thus alleviating the
necessity for an ad hoc formulation of a transport equation for E. Strategies for closing the
triple correlations include the work of Kovasznay (1948) and Heisenberg (1948), the di�usion
approximation type model of Leith (1967), the quasi-normal models introduced
independently by Chou (1940) and Millionshikov (1941) and advanced through the work of
Proudman and Reid (1954), Tatsumi (1957), O'Brien and Francis (1962), Ogura (1963),
Orszag (1970), Leith (1971), and AndreÂ and Lesieur (1977). More sophisticated families of
closures exist in the direct interaction approximation (DIA) of Kraichnan (1958, 1959, 1964,
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1965), and the test ®eld model (TFM) of Kraichnan (1971, 1972). The models of Kovasznay,
Heisenberg, and Leith treat the transfer of energy in k-space as a local (di�erential) process,
while the rest of the previously mentioned spectral models treat the triadic interactions in k-
space as nonlocal (integral) phenomena. Kraichnan and Spiegel (1962) showed that the
di�usive-type closures can be viewed as a local-transfer limit of the nonlocal models.
Other two-point constant density turbulence transport models include the forms of EDQNM

proposed by Cambon (1979), Cambon et al. (1981), Bertoglio (1982), and the di�usion
approximation proposed by Besnard et al. (1996). Bertoglio and Jeandel (1987) apply a spectral
closure (EDQNM) for boundary layer calculations of constant density ¯ow. Jeandel et al.
(1978) and Besnard et al. (1996) demonstrate the integration of a spectral model over k-space
by assuming self-similar form functions in k-space. This integration reduces the spectral model
to a single-point model, i.e. a K±E type of model. Jeandel et al. applied this strategy to both
homogeneous and inhomogeneous turbulence. Clark and Zemach (1995) used the spectral
transport model of Besnard et al. (1996) to examine constant density anisotropic ¯ows and the
spectral behavior of return to isotropy. Clark and Spitz (1995) have developed a spectral
transport model for homogeneous variable density ¯ows, and Besnard et al. (1995) have
suggested extensions of the work of Clark and Spitz (1995) and Besnard et al. (1996) for the
inhomogeneous variable density case.
The spectral turbulence transport model developed herein for inhomogeneous variable

density ¯ows is by no means the most mathematically sophisticated when compared with other
spectral transport models. This model does, however, purport to capture much essential
physics in the generalized circumstance of the variable density inhomogeneous ¯ow. Due to the
implicit assumption of spectral equilibrium inherent to all single-point turbulence transport
models, a two-point model can more adequately represent mean ¯ow transients that result in
departures from spectral equilibrium than can a one-point model.
Our goal is to investigate the turbulence by means of extended transport approaches, using

two-point (spectral) techniques. In a subsequent paper (part II of these articles which will
hereafter be referred to as Article II), we seek `generic' spectral forms by which to describe the
turbulence structure, especially in circumstances of inhomogeneous, anisotropic ¯ows. These
functions may be exact or approximate, depending on circumstances to be described below.
They are usually revealed in greatest clarity under circumstances that are described by self-
similar combinations of the physical and spectral variables, but they may also occur to a
signi®cant level of approximation in localized regions that are continually approaching self-
similarity despite the shifting nature of the mean-¯ow drive.
Reynolds decomposition and ensemble averaging of the Navier±Stokes equations, using

mass-weighted averages, leads to an unclosed hierarchy of transport equations for correlations
at all orders. Written for covariant statistics at a single point in space and supplemented by
closure derivations or assumptions, the results have proved useful for describing numerous
circumstances of two-¯uid turbulence (Andronov et al., 1982; Besnard et al., 1987). (The model
proposed by Besnard et al. (1987) is hereafter referred to as the BHR model.) There are,
however, some signi®cant elements missing from this approach.
A clue to these missing elements lies in considering the much better known turbulence

transport equations for constant-density ¯uid ¯ow. It has long been recognized that a single-
point transport equation for Reynolds stress must be supplemented by a transport equation
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for an auxiliary quantity, often chosen to be the dissipation tensor, Eij, or its contraction, E.
Previously identi®ed (Daly and Harlow, 1970) as the Reynolds-stress sink caused by

molecular viscosity, E is more accurately associated with the cascade ¯ux of energy from low

to high wave numbers. Recognizing the necessity for a transport equation of this dissipation

tensor provides a further motivation for considering a two-point generalization of the

Reynolds stress, from which we can derive the spectral transport equations by Fourier

transformation. This spectral representation does not require a supplemental transport

equation for scale because it describes the continuously evolving distribution of Reynolds

stress across all wave numbers. In particular it con®rms the interpretation of E as the ¯ux

from the dominant lower-wave-number parts of the spectrum through a more-or-less inertial

(or Kolmogorov) middle range to high wave numbers. Viscous dissipation may occur at even

higher wave numbers at a rate that is not necessarily in equilibrium with the cascade ¯ux. A

transport equation for E can be derived as a moment of the full spectral equations provided

that an appropriate spectral form can be discovered for the spectral tensor, as discussed

below.

With large density di�erences in the ¯uid, the spectral analysis becomes much more

complicated, especially because we include density variations that arise from the

Fig. 1. Flow chart de®ning the ancestry of our spectral transport model.
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interpenetration of two ¯uids. The Navier±Stokes equations are assumed to be relevant for
both miscible and immiscible mixing.

At this stage of theoretical development, the attainment of a rigorous formulation, even for
constant density ¯ows, is not possible. During the last three decades of constant-density
turbulence-transport developments, the model derivations have had to combine empiricism
with rigor, and the same is true for the variable-density extensions. Constraints
(dimensionality, preservation of conservation, tensor form, Galilean invariance, simplicity of
form, and similar general considerations) serve to limit the choices for modeling. Comparisons
with experiments likewise furnish guidance.

In this article we describe a spectral turbulence transport formulation for variable-density
turbulence in circumstances of strong inhomogeneity and anisotropy. In Article II we show
that moments of these equations introduce some auxiliary single-point variables. These are
some of the elements that are missing from previous single-point formulations for variable-
density turbulence (e.g. the BHR model).

The family of model-development work into which these variable-density turbulence
activities ®t is shown in the diagram of Fig. 1. The starting point for all directions is the
Navier±Stokes equations.

Guidance for the spectral transport model developed herein is taken from the following three
branches of transport modeling: the simple (local) closures describing transfers in k-space from
the two-point branch (Besnard et al., 1996; Clark and Spitz, 1995), the single-point, single-
¯uid, turbulence transport models, and the single-point, two-®eld models. Another branch
from the two-point box could be shown that handles the transfers of energy in k-space with
much more detail, but no use is made of that approach for our model. Likewise other branches
that exist are not shown since the ancestry of this model is composed of only these three
branches.

Another branch that evolves from the Navier±Stokes equations leads to the two-®eld (or
multi®eld) ¯ow equations. Explicit modeling describes the principal interaction between discrete
entities and ¯uid in terms of drag. Within the two-®eld formulation, the ¯uid interpenetration
is described by terms in the equations that contain no contributions from ¯uctuations away
from the mean within each ®eld. This interpenetration, termed herein an `ordered' process, is
discussed by Steinkamp (1996). In addition, a `disordered' component of the interpenetration
can be expected to arise as a result of ¯uctuations away from the mean ¯ow. The turbulence
transport equations are capable of representing this `disordered' component of
interpenetration. The two-®eld equations are capable of exhibiting the origin for these
¯uctuations. They are unstable whenever there is relative motion between the two ¯uids. Thus
the two-®eld formulations contain hints of a disordered component to interpenetrating ¯ow but
require further modeling for practical exploitation of this feature. As usually written, two-®eld
models are incapable of representing crucial aspects of the general turbulent dynamics that we
seek to describe.

Directly descendent from the two-®eld models are those that have been extended to include
the missing processes; such as an evolving length scale, and turbulence. These modi®cations are
derived through empirical and heuristic arguments and are discussed by Steinkamp et al.
(1995).
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2. The two-¯uid spectral approach

For two or more interacting ¯uids, the usual approach to describing their interpenetration
has been through the use of two-®eld or multi®eld equations, as described above. One might
also consider the problem in terms of a single ®eld of variables in which there are large
variations in ¯uid density. Single-point models have been described, and applied with some
success, by Andronov et al. (1982), Nikiforov (1991), and Besnard et al. (1992). Two-point
models are only recently being investigated, notably by Clark and Spitz (1995), Godeferd and
Cambon (1994) for homogeneous circumstances, Besnard et al. (1995) and this current work
for inhomogeneous con®gurations.
In this study we obtain correlations that are functions of two points in space. We pass to

wave-vector space by means of Fourier transforms with respect to the separation variable of
the two points. For the sake of simplicity we angularly integrate these equations in (wave
vector) k-space thus reducing the spectral dependence to (wave number) k. This transformation
allows for an identi®cation of length scales to Fourier modes. We realize that this
simpli®cation captures only the real part and not the imaginary part of the spectrum and that
a signi®cant portion of the physics involving directional dependence in Fourier space is
averaged out of the equations. For now, however, we feel that a fully three-dimensional k-
space model is unwarranted due to lack of any experimental data to verify such a model.
In the current form of our representations, we are not especially concerned with density

discontinuities. For our purposes the dominant spectral structure is associated with relatively
large clouds or blobs of a dispersed phase and with large-scale structures. Thus we ignore for
now the behavior of the ®ne-scales, e.g. the dissipation range at high k.
Building on the work of Clark and Spitz (1995), we incorporate guidance from two-®eld

formulations and from many of the constant-density developments, both single-point and
spectral. These relationships are discussed more fully in the next section, which describes the
equations and the origins of contributing terms.
We require mass, momentum, and energy conservation in both physical and wave-number

space in the inviscid limit. Any candidate model terms must be of the proper tensor
formulation, that is to say, they must have the same free indices, same symmetries, same
invariants, and be dimensionally consistent with the unmodeled terms. We also demand that
the model terms integrate (over wave numbers) to reasonable single-point forms. In the
absence of further guidance, for candidate model terms we invoke simplicity, manifested by the
omission of certain products of ®rst derivatives and of higher than second derivatives (in the
spirit of the Stokes stress tensor in the Navier±Stokes equations). These constraints lead to
simple low-order approximations (e.g. for cascade in k-space) that capture much of what
appears to be happening, as illustrated by the test examples described in Article II.
To summarize the motivations for developing a tractable and broadly applicable spectral

formulation for turbulence in a ¯uid with variable density, we have mentioned its relationship
to the enhancement of single-point models. In Section 1 we pointed out that a transport
equation for the single-point dissipation tensor, Eij, must be derived. For this endeavor, the
knowledge of the scales associated with the turbulence proves very useful for formulating
credible Eij equations. A spectral formulation may also provide a basis on which to construct
scale information of the turbulence.
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The additional spectral information frees the modeling from the simplistic characterization
of turbulence by the magnitude of turbulence kinetic energy (K) and a turbulent length scale
(L), or a dissipation rate (E), leading to less simplistic modeling assumptions. Unlike single-
point models, the spectral formulation is not inherently limited to certain regimes of Reynolds
numbers. Hence, spectral representations potentially allow a much greater scope of interesting
problems to be solved realistically, albeit at greater computational expense, and allow the
derivation of model equations that can go beyond one-point formulations in their applicability
(as shown in Article II).

3. Formulation of the model equations

Development of the spectral model equations is described schematically in Fig. 2. From the
spectral formulation there radiate numerous directions for investigation as shown in Fig. 3.
The physical processes described by our spectral transport equations are of three types,

advective, pressure-related and viscous. For each there are several features that need
representation. Advective processes strongly in¯uence the kinematics of mixing. These

Fig. 2. Flow chart describing steps of the spectral formulation.
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processes are accounted for as both mean-¯ow and stochastic advective transport and serve as
source terms in the Reynolds stress transport equation. Pressure is both a local and global
process. Locally, pressure e�ects are manifested as di�erential acceleration and momentum
exchange between ¯uid parcels of di�ering mass, the latter of which has historically been
represented as drag. Nonlocally, pressure e�ects motivate mean-¯ow coupling and di�usion
terms in physical space, as well as cascade and return to isotropy in wave number space.

4. The spectral equations

Following the usual convention of single-point turbulence modeling of variable density ¯ows,
the ¯ow ®eld variables, i.e. density, r, velocity, u, and pressure, p, are decomposed into their
mean and ¯uctuating parts and substituted into the conservation equations. The
decompositions are

r � �r� r0 �1a�
u � �u� u0 �1b�
p � �p� p0 �1c�

where the overbar denotes the uniformly weighted ensemble average and the prime denotes a
¯uctuation about the average with the average of a ¯uctuating quantity equal to zero. For
variable density ¯ows, it is useful to incorporate the mass-weighted averaging procedure
introduced by Favre which leads to a conservative form of the Reynolds stress tensor, Rij, in
the averaged momentum equations, where Rij=rui0uj0. Thus the averaged mass-weighted
velocity, uÄ , is de®ned as

Fig. 3. Flow chart describing all of the potential uses of a spectral formulation.
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~u � ru
�r

�2�

and u0 denotes the mass-weighted ¯uctuation about this averaged quantity, such that
u=uÄ +u0 with ru0=0.
If we apply the Reynolds decomposition to this momentum density, ru, we get

ru � � �r� r0���u� u0� � ru� r0u0 �3�
In order to identify a velocity that corresponds to the mean mass ¯ux, we can use the Favre
mass-weighted velocity, uÄ . Thus we incorporate the mass-weighted velocity into the expression
for momentum density to get

~u � �u� r0u0

�r
�4�

We de®ne another important variable here, namely the velocity a, associated with the net
turbulence mass ¯ux relative to uÄ . From Eq. (4), it is apparent that this velocity associated with
the mass ¯ux is just

a � r0u0

�r
�5�

The idea that this quantity describes the ¯uxing of mass relative to uÄ , is demonstrated by the
resulting expression:

~u � �u� a �6�
Due to the importance of this quantity, the model discussed herein transports this quantity,
namely a, which is derived from the Navier±Stokes equations. The transport equation for a
contains a source term composed of the mean pressure gradient coupled to a kind of density
correlation, b, where b=ÿr 0(1/r) 0. A transport equation for b is derived from the conservation
of mass equation.
For two arbitrary points in space, x1 and x2, the two-point generalization of single-point

statistics as introduced by Clark and Spitz (1995) are (we omit the argument t for brevity)

Rij�x1;x2� � 1

2
�r�x1� � r�x2��u00i �x1�u00j �x2� �7�

ai�x1;x2� � ÿu00i �x1�r�x1�n�x2� �8�

b�x1; x2� � ÿr0�x1�n0�x2� �9�
where

n�x� � 1

r�x� �10�

Note that there are other forms that could be used for these quantities, which also satisfy the
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requirement of reducing to the single-point form as x1 approaches x2 and possess the desired
symmetries, i.e. those possessed by the constant density Reynolds stress tensor.
The constraints on the Reynolds stress tensor, as required by Clark and Spitz (1995), are

1. Rij(x1, x2)= Rij(x2, x1)
2. As vx1ÿx2v41, Rij(x1, x2)4 0
3. Rij(x1, x2) remain bounded as vx1ÿx2v 4 0

There is no obvious constraint as to which choice is best except that whatever is chosen must
be correctly transported by the Navier±Stokes equations. The choice is thus dictated more by
properties of manipulative ease and transparency of interpretation. Let us de®ne

x � 1

2
�x1 � x2� �11�

and

r � x1 ÿ x2 �12�
and substitute into the transported variables. We have for the additional Fourier
transformations

Rij�x; k� �
�
Rij�x; r�eÿik�r dr �13�

ai�x; k� �
�
ai�x; r�eÿik�r dr �14�

b�x; k� �
�
b�x; r�eÿik�r dr �15�

In this report, we work with variables and equations that have been angularly averaged in k-
space:

Rij�x; k� �
�
Rij�x; k� k

2 dOk

�2p�3 �16�

ai�x; k� �
�
ai�x; k� k

2 dOk

�2p�3 �17�

and

b�x; k� �
�
b�x; k� k

2 dOk

�2p�3 �18�

where dOk=sin y dy df for 0E yE p; 0E fE2p. From these we can recover the single-point
forms
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Rij�x� �
�1
0

Rij�x; k�dk �19�

ai�x� �
�1
0

ai�x; k� dk �20�

and

b�x� �
�1
0

b�x; k� dk �21�

Clark and Spitz (1995) derive equations for a completely statistically homogeneous
con®guration. For the inhomogeneous free mixing layer, we describe the necessary minimum
extensions that we have found to give agreement with experiments. Thus we consider the
special case of a mixing layer of in®nite extent in the x and z directions, so that ensemble
averages vary only with normal direction, y, scalar wave number, k, and time. For this
con®guration, the ensemble averages are assumed to be equivalent to spatial averages over x±z
planes. The ¯uid is con®ned by stationary boundaries far above and below the turbulent
mixing zone (TMZ), such that there is nowhere any vertical volumetric ¯ux (i.e. the ¯ow is
incompressible) and u( y, t)=0, and uÄ ( y, t)= a( y, t). Hereafter, we will use Rij, ai, and b to
indicate the spectral quantities and we will explicitly show their respective arguments only for
the case of representing their single-point forms, i.e. when they are functions of the normal
direction y and time only. Whereas the density, r, velocity, u, pressure, p, turbulent length
scale, S, and the turbulent kinetic energy, K, will always be functions of the normal direction y
and time only. The acceleration, g, varies only with time for these discussions.
The appropriate equations for r and uÄ remain the same as for the inviscid single-point

formulation. The equations are presented here for one spatial dimension, with uÄy and ay( y, t)
representing the y-component of the respective velocity vectors.

@ �r
@t
� @ �r ~uy

@y
� 0 �22�

@ �r ~uy
@t
� @ �r ~uy ~uy

@y
� ÿ @ �p

@y
ÿ @Ryy

@y
� �rgy �23�

~uy � ay�y; t� �24�
The new equations for the spectral variables, ay, b, Rnn and Ryy are presented in the following
discussion, along with descriptions of the Rnn-contributing terms in each. Assuming
axisymmetry, so that Rxx=Rzz, the values for these quantities can be determined by knowing
Ryy and Rnn. For this con®guration in principal coordinates, Rij has no o�-diagonal
components. With the addition of horizontal shear the additional Reynolds stress components
are analogous to those presented by Besnard et al. (1996) in their analysis of a free shear, and
equations for Rxy and/or Rzy are obtained as straightforward extensions.
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For ay, we write

@ay
@t
� ÿ ~uy

@ay
@y
� b

�r
@ �p

@y
ÿ Crp1k

2 ���������
anan
p � Crp2k

����������
kRnn

�r

s" #
ay ÿ Ryy

�r2
@ �r
@y

� @

@k
k2

����������
kRnn

�r

s
ÿC1ay � C2k

@ay
@k

� �( )
� Cd

@

@y
ut
@ay
@y

�25�

The contributing terms, discussed in the order they appear on the right side, are:
(1) The advective term

ÿ ~uy
@ay
@y

(2) A principal driving term

b

�r
@ �p

@y

written as a direct extension to the term in single-point formulation, on the assumption that
spectral b produces spectral a at the same wave number. Direct numerical simulations (DNS)
of Sandoval (1995) indicate that there are modi®cations to this term which arise from inclusion
of appropriate modeling of the closure for a single-point term like

�r
1

r

� �0@p0
@xi

�26�

The e�ect can be described by using some appropriate fraction of b in this source term; we
have not, however, included this modi®cation in our present investigations. The assumption
that b produces ay at the same k may be justi®ed by the fact that b couples directly to Hp to
produce ay, see Clark and Spitz (1995) for a discussion of the homogeneous case. Sandoval
(1995) has also indicated that this is true from his DNS calculations of homogeneous variable
density turbulence. Note that this term contributes a pressure gradient to the equation
uÄy=ay( y, t), which serves to determine the value of the pressure gradient at every time
through the transient dynamics.
(3) The representation of drag between the two ¯uids is

ÿ Crp1k
2 ���������

anan
p � Crp2k

����������
kRnn

�r

s" #
ay

The Crp1 term represents the form drag Crp1 is directly related to the drag coe�cient that
Youngs (1992) found to be an order of magnitude greater than the classical value. In Article II
we con®rm the Youngs ®nding and attribute the necessity for large magnitude to the e�ects of
convoluted ¯ow paths along the interface between the ¯uids. The Crp2 term represents a
`viscous-like' drag, in this case resulting from e�ective turbulence viscosity rather than
molecular viscosity. These two terms are derived directly as extensions of the usual two-®eld

M.J. Steinkamp et al. / International Journal of Multiphase Flow 25 (1999) 599±637610



formulation. There are some possible alternative expressions for these drag terms which could
incorporate relevant e�ects that are nonlocal in wave number space. For example, we could
consider replacing

ÿCrp1k
2 ���������

anan
p �27�

by

ÿCrp1

�k1
0

k
���������
anan
p

dk �28�

This nonlocal form describes contributions to drag at wave number k from all other wave
numbers lying between k=0 and k= k1. There is no di�culty with this formulation if we
attempt to let k141. With the expectation that ay4k ÿm, with m>2, for large k (see form-
function discussion in Appendix C), the integral converges in that limit. Similar comments can
be made about possible nonlocal forms for the Crp2 term. It is tempting to consider various
nonlocal drag expressions because of the heuristic idea that the e�ects of many wave numbers
can combine collectively to transfer momentum at any particular wave number between the
¯uids. At this stage we have not found any formulation that works better than the simple local
form, insofar as comparisons with experimental data are concerned. In addition, these terms
could also depend in a nontrivial fashion on dimensionless functions of dimensionless b( y, t).
(4) A second principal drive term is

ÿRyy

�r2
@ �r
@y

This term is called the gradient-¯ux term because whenever it is roughly balanced by drag, the
result is an expression for ray (the spectral mass ¯ux), proportional to the gradient of r. Term
2, in contrast, can contribute a counter-gradient ¯ux, notably when reversal of acceleration
turns the mixing zone into a demixing zone. More generally, the two principal drive terms, 2
and 4, interact with the other terms in the ay equation in various possible ways. In the start-up
phase of unstable mixing, the pressure-gradient term acts wherever b is seeded at the interface
to drive a strongly-ordered part of @ay/@t. The growing value of ay interacts with the pressure
gradient in the Rnn and Ryy equations (see below), which produces a disordered component of
Reynolds stress, giving in turn a source to a disordered component of @ay/@t. In this mixing
stage of the TMZ growth, the two sources reinforce each other. As the TMZ dynamics mature
into self-similar growth, the large-wave-number components of b may cascade into an inactive
range, which means that for those wave numbers the pressure-gradient source to @ay/@t has
changed to essentially complete balance with the drag term. Only the low-wave-number parts
of b (along with the density-gradient source) are e�ective in perpetuating the continuing self-
similar growth of ay. Thus the spectrum of b can be considered to possess an `active' low-k
part and a `passive' high-k part. The partitioning of the spectrum into active and passive parts
is signi®cant for the development of one-point models. More details regarding this concept of
active and passive parts of the b spectrum are given in Article II in the discussion of
acceleration reversal. If the acceleration, g, suddenly vanishes, then only the no. 4 source term
remains to continue widening the TMZ; however, its e�ectiveness for this purpose is
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signi®cantly curtailed by the drag (3) and cascade (5) terms. When g is completely reversed,
there is an adjustment period in which the no. 2 source term works in concert with drag (3),
across all parts (previously active and passive) of the b spectrum, to accomplish the reversal of
ay. This sequence of events represents a spectral nonequilibrium process. Only when ay has
changed sign do these terms again oppose each other and the passive part of the b spectrum
return to dormancy. It is interesting to con®rm in calculations of these processes that the
passive part of the b spectrum indeed has very little e�ect on the overall spectrally integrated
dynamics, as demonstrated in Article II by a comparison of two calculations, one that retains
the passive part and the other that discards it. The only signi®cant di�erence between the two
calculations lies in the value of b; everything else is essentially the same.
(5) The cascade terms are

@

@k
k2

����������
kRnn

�r

s
ÿC1ay � C2k

@ay
@k

� �( )

These are both conservative in k-space. They are based on the model proposed by Leith (1967)
for local cascade, with a wave-like part (the C1 term) and a di�usive part (the C2 term); see
Besnard et al. (1996) for an extensive discussion. With C1>0 the wave-like cascade is forward
(i.e. to higher wave numbers). Of necessity, C2>0, resulting in both forward and reverse
contributions to cascade. Several nonlocal forms of cascade representation have been
considered. These nonlocal forms attempt to represent the triad interactions associated with
triple-correlation terms in the formal derivation for constant-density turbulence as integrals
over k-space (e.g. EDQNM (Orszag, 1970) or DIA (Kraichnan, 1958, 1959, 1964, 1965)
derivations). Integral formulations for the variable density case are not yet rigorously
developed, but one way to accomplish some degree of nonlocality would come (as in the drag
term 3) from replacement of the local cascade rates by nonlocal integral cascade rates, for
example

k

����������
kRnn

�r

s
�29�

becomes�������������������������k1
0

k2
Rnn

�r
dk

vuuut �30�

Both forms are essentially equivalent in the inertial range. It should be noted that Rnn is not
necessarily a nonnegative de®nite function; hence the simpler local form of Eq. (29) will fail for
circumstances of Rnn<0. Clark and Spitz (1995) chose the form in Eq. (30) on this basis and
also on the observation that the so-called `catastrophe time' (Lesieur, 1990) for constant-
density isotropic turbulence is predicted with somewhat better agreement to EDQNM, and for
its ability to reproduce the so-called k ÿ1 `Batchelor scaling'. However, for most circumstances,
we have seen little di�erence between the results using either cascade rate time-scale, and we
have not encountered negative values of Rnn; thus we have opted for the simpler form of
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Eq. (29). Indeed, it appears, as stated above, that the modeling constraints (conservation,
tensor form, dimensionality, etc.) used for our cascade (and other) terms enable the simplest
forms (like term 5) to capture much of the relevant physical processes.
It should be noted that cascade rates proportional to k2

�������������������������������
kan�y; t�an�y; t�

p
may be proposed

on dimensional grounds (Clark and Spitz, 1995), although their physical signi®cance is not
obvious and their inclusion in calculations produces very minor e�ects, neither helpful nor
harmful in matching results with existing experimental data. Similar to the discussion of no. 5
for the ay equation, this expression is not a nonnegative de®nite function, and a similar
argument is used for our choice of cascade rates.
(6) Spatial di�usion,

Cd
@

@y
ut
@ay
@y

This term, which is intended to represent the action of the triple correlations as well as the
pressure velocity correlations, is the same as used by many previous authors and requires two
comments pertaining to the possible choices for expressions for the turbulent viscosity, ut: ®rst,
it is well known that the eddy viscosity, ut, should be modeled nonlocally; and second, the
processes associated with an eddy viscosity are anisotropic. Nevertheless, until further
investigation, for simplicity we chose the isotropic form

ut �
�1
0

����������
kRnn

�r

s
dk

k2
�31�

which reduces to the commonly used single point form

ut � 0:09S
����
K
p

�32�
in which S is the mean turbulent length scale and K is the total turbulence energy per unit
mass. To accomplish this correspondence, an identi®cation of a generic form function for Rnn

in k-space and the performance of an appropriate moment integral, as discussed in Article II is
required. An appropriate Cd must also be chosen.
Next, for b we write

@b

@t
� 2 �rÿ r1 ÿ r2

r1r2

� �
@ �ray
@y
ÿ Cfb �n2

@

@y

�r
�n

� �� �
@kay
@k

� @

@k
k2

����������
kRnn

�r

s
ÿC1b� C2k

@b

@k

� �( )
� Cd

@

@y
ut
@b

@y
ÿ Cdbk

2Db �33�

The contributing terms on the right side are:

(1) The kinematical source term,

2 �rÿ r1 ÿ r2
r1r2

� �
@ �ray
@y

M.J. Steinkamp et al. / International Journal of Multiphase Flow 25 (1999) 599±637 613



derived by Steinkamp (1996) for single-point transport of b. Because this term describes the
e�ects of ¯uid mass transfer, there is no requirement for an advective term in the b equation.
This term maintains the value of b at nearly its con®gurational value, namely y1y2(r1ÿr2)2/
r1r2 (Besnard et al., 1992), where y1 and y2 are the volume fractions of ¯uid 1 and ¯uid 2,
respectively.
(2) The transport of b through wave-number space,

ÿCfb �n2
@

@y

�r
�n

� �� �
@kay
@k

as induced by the presence of inhomogeneity in the mixture of ¯uids. This term is formally
derived as a next-higher-order contribution to the Taylor expansion of points, x1 and x2 about
the central point, x. It resembles the Cf terms previously proposed by Besnard et al. (1996)
which describe the mean-¯ow-shear-induced distortions of turbulence spectra in a constant-
density ¯uid. In that case, the term contributes to the vortex-pairing process that occurs in a
free shear layer. Here it contributes to the bubble-amalgamation process that is known to
occur in the self-similar stages of TMZ growth at small wave numbers and to an alteration of
cascade that occurs through `eddy distortion' at high wave numbers. Its presence is crucial to
the achievement of agreement with experiments. A higher-order degree of nonlocality (e.g. an
integral expression) may be appropriate, but at this stage there is no proof of the necessity for
this complication.

A heuristic derivation of this term suggests that it must couple the inhomogeneity as
described by Hp/r, with the presence of mass interpenetration, described by ay. (Direct
coupling to Hp/r seems implausible, as this contributes to the creation of interpenetration and
is not a measure of its current level.) Dimensional arguments restrict the possibilities
appreciably; adding the necessity for conservation in k-space leads to a form proportional to

1

�r
@ �r
@y

@kay
@k

�34�

which is very close to the form that arises in the two-point advection terms, as derived in
Appendix B.
(3) The cascade terms,

@

@k
k2

����������
kRnn

�r

s
ÿC1b� C2k

@b

@k

� �( )

These have the same form as the cascade terms for ay, and the same comments apply here.
(4) The spatial di�usion term,

Cd
@

@y
ut
@b

@y

(5) The decay term resulting from molecular di�usion between species,
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ÿCdbk
2Db

for which the kinematic di�usion coe�cient is D. In this work, D 4 0.
Next, for Rnn and Ryy we write

@Rnn

@t
� ÿ @Rnn ~uy

@y
�

��1
ÿ1

2ay
@ �p

@y

� �
�k exp�ÿ2k j y0 ÿ y j�� dy0 ÿ 2Ryy

@ ~uy
@y
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@y
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and

@Ryy

@t
� ÿ @Ryy ~uy

@y
�

��1
ÿ1

2ay
@ �p

@y

� �
�k exp�ÿ2k j y0 ÿ y j�� dy0 ÿ 2Ryy

@ ~uy
@y
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@y
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@Ryy

@y
� @

@k
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����������
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ÿC1Ryy � C2k

@Ryy
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� �( )

� Cm

�k
0

����������
kRnn

�r

s
dk

1

3
Rnn ÿ Ryy

� �
�36�

The contributing terms on the right side are:

(1) The advective term,

ÿ @Rij ~un
@xn

In contrast to the ay equation, in which the conservation of mass equation is used to remove r
from

@ �ray
@t
� @ �ray ~uy

@y
� . . . �37�

these similar terms in the equations for Rij retain the r that is intrinsically present in the
generalized expression for the Reynolds stress (Eq. (7)).
(2) A principal driving term,��1
ÿ1

2ay
@ �r
@y

� �
�k exp�ÿ2k j y0 ÿ y j�� dy0

coupling ay with the mean pressure gradient. This process is intrinsically nonlocal in physical
space, with e�ects that reach progressively farther away for wave numbers approaching zero
(i.e. for large scales). The basis for this nonlocality lies in the propagation of pressure waves.
In linear Kelvin±Helmholtz or Rayleigh±Taylor stability analysis the e�ects are manifested in a
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velocity potential that varies as exp[ÿkvyv], where vyv is the distance from the center of the
instability layer. Thus the spreading of Rij, which varies as the square of velocity ¯uctuations,
is represented by the factor exp[ÿ2kvyv], as shown in this term. Otherwise the coupling of ay
with the pressure gradient is the same as the single-point coupling. The basis and consequences
of this nonlocality in physical space are discussed further in Appendix A.
(3) Another principal driving term,

ÿRin
@ ~ui
@xn
ÿ Rjn

@ ~ui
@xn

coupling Ryy to gradients of uÄy. This standard term (Besnard et al., 1996) is well known,
especially for constant-density turbulent ¯ows, but it is equally relevant here (although of
relatively minor importance for the TMZ studies).
(4) The spatial di�usion term,

Cd
@

@xn
ut
@Rij

@xn

As in the ay and b equations, the form to be used can be local or any of several nonlocal
variants.
(5) The cascade terms,

@

@k
k2

����������
kRnn

�r

s
ÿC1Rij � C2k

@Rij

@k

� �( )
The same formulation and comments apply here as for the cascade of ay.
(6) The return-to-isotropy term,

Cm

�k
0

����������
kRnn

�r

s
dk

1

3
Rnn ÿ Rij

� �
which appears only in the deviatoric components of Rij. The return rate can be written either
in local form or, as shown, in the nonlocal form

Cm

�k
0

�����������
k0Rnn

�r

s
dk0 �38�

Another possible nonlocal form addresses the issues discussed in term 5 of the ay equation and
can be written as:

Cm

�����������������������������k
0

�k0�2 Rnn

�r
dk0

vuuut �39�

We have tried both forms for the return-to-isotropy rate and have found negligible di�erence.
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A discussion on the choice of values for the model coe�cients is given in Article II. For
reference, we present those model coe�cients here and we also give the generalized Cartesian
tensor form of our base-model equations using the local form of the pressure gradient source
term in the Reynolds stress transport equation instead of the nonlocal form. The reason for
this is that we have not yet tested a nonlocal form of the source term for a completely general
mixing circumstance. In the reference frame with uy00,
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where the model coe�cients have been set to:
Crp1=5.0, Crp2=6.0, C1=0.1212, C2=0.0606, Cd=0.03, Cfb=0.5, and Cm=1.0.

5. Conclusions

Clark and Spitz (1995) derive the exact unclosed two-point transport equations for the
primary mass-averaged variables of our spectral model directly from the Navier±Stokes
equations. The transport equations have been Fourier transformed with respect to the
separation vector between the two points. Due to their complicated nature, the transport
equations are angularly integrated in k-space to reduce the transport models to a simpler form
in wavenumber k-space. This reduction is justi®ed by the fact that the k-space captures a great
deal of the phenomena of interest and is much less computer intensive than the fully three-
dimensional k-space model. These derivations are given by Clark and Spitz (1995). Constraints
and guidelines have been identi®ed and incorporated for modeling the necessary closures for
this variable density inhomogeneous model in k-space.
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Three major enhancements of this spectral model over any single-point model are: (1) the
alleviation of the need for a transport equation for the length scales of the transported
turbulence variables; (2) the alleviation of the assumption of spectral equilibrium (a
requirement for the validity of single-point model equations); and (3) a global representation of
instantaneous pressure-wave propagation. The second of these two enhancements enables a
spectral model to describe transient ¯ows that are out of spectral equilibrium, whereas a single-
point model cannot. Thus, with a spectral model we are able to correlate the concept of
turbulence decay with the cascade of energy from large turbulent scales down to smaller scales
de®ned by a transfer rate that may vary with time, space and scale size.
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Appendix A

A.1. Nonlocal processes in physical space

Integral formulations in physical space enable the characterization of instantaneous pressure-
wave propagation of ¯uctuations from one point in physical space to another. Thus, for
example, the existence of mean-¯ow shear can contribute to the nonlocal creation of turbulence
at localities lying outside the shear layer. Likewise a TMZ between two ¯uids, subjected to a
mean-®eld pressure gradient, can manifest the e�ects of di�erential acceleration beyond the
borders of the mixing zone.

Classical Rayleigh±Taylor analysis for the linear instability of an interface introduces a
velocity potential that varies as exp(ÿkvyv), in which vyv is the distance from the interface
(Chandrasekhar, 1961). If we assume that the amplitude of the perturbation on the interface is
approximately half the width of the TMZ, then for a TMZ with width W and for wave
numbers such that kW>1.0, the linear theory does not apply. For parts of the turbulence
spectrum with kW<<1.0, however, the linear theory is relevant and shows that ¯uctuating
components of velocity extend appreciably beyond the boundaries of the TMZ. This nonlocal
production of velocity ¯uctuations translates into a nonlocal source for Rij. It does not,
however, indicate nonlocal sources for ay or b, which are associated with the transport of ¯uid
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rather than pressure e�ects. Therefore we do not use nonlocal sources for ay or b. For b, there
are no pressure terms to provide this e�ect; for ay, preliminary simulations of Sandoval (1995)
indicate ¯uctuating pressure correlations act to modify the bHp, which is already included as a
local term.

Guided by the results of linear analysis, we thus have modi®ed the source terms for Rnn and
Ryy in the following manner. The local form,

@Rnn

@t
� 2ay

@ �p

@y
�A1�

is rewritten

@Rnn

@t
�

��1
ÿ1

2ay
@ �p

@y

� �
Q�y0; y� dy0 �A2�

and similarly for Ryy.

The kernel Q( y 0 ,y), `nonlocality function,' must satisfy the condition��1
ÿ1

Q�y0; y� dy0 � 1 �A3�

For our problem we also expect it to depend only on vy 0 ÿ yv and to decrease as
exp[ÿ2kvy'ÿ yv] as the separation between points increases. For large values of k, Q( y 0, y)
approaches a delta function. For now, we choose

Q�y0; y� � k exp�ÿ2k j y0 ÿ y j� �A4�
which satis®es the normalization condition, behaves in the required manner as k4 0, and has
the desired delta-function behavior as k 41. It remains to be demonstrated, however, and we
will now show that this `spreading' factor allows the turbulence model to recover the linear
Rayleigh±Taylor behavior as k 4 0. We will assume that the con®guration starts at rest with
only b present; the lowest order contribution to the evolution of ay and Ryy (when both are
still very small) is described by the following subset of Eqs. (25) and (35).

Consider the following parts at ®rst without the Q( y 0, y):

@Ryy

@t
� 2ay

@ �p

@y
�A5�

@ay
@t
� b

�r
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@y
ÿ Ryy

�r2
@ �r
@y

�A6�

Di�erentiate the Ryy equation with respect to time, allowing only for the variation of ay, and
insert @ay/@t from the second equation.
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Ryy � 2b
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@y

� �2
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The second term on the right, in the qualitative fashion of the other terms here omitted, is not
relevant to this discussion, whereas the ®rst term on the right contributes either an oscillatory
component (if Hp(Hr)>0) or an exponentially growing component (if Hp(Hr)<0). This would
appear to be the classic linear Rayleigh±Taylor solution but fails in that regard in one crucial
respect.

To demonstrate this failure and its remediation, we note that, as it is written in local form,
the ®rst term distributes the turbulence energy only within the mixing layer itself. In that
region for the unstable case, Ryy grows as

Ryy � Ryy�t � 0� exp�t
���������������������������������
2 j r �p�r �r� j = �r2

p
� �A8�

or

Ryy � Ryy�t � 0� exp�t
�������������������������������
2 j Drg= �r j =W

p
� �A9�

Where g is the y-component of Hp/r and Hr=Dr/W, with Dr being the overall density
di�erence across the TMZ of width W. In contrast, for an in®nitesimal velocity squared, classic
linear Rayleigh±Taylor analysis gives (Chandrasekhar, 1961)

Ryy � Ryy�t � 0� exp�2t
���������������������������
k j Drg j =2 �r

p
� �A10�

(Note the factor of 2, to describe growth of velocity-squared.) The essential di�erence between
these two results is the occurrence of 1/W in the ®rst and k in the second. In both cases,
Ryy(t=0) may depend on k, but the turbulence-transport result is essentially independent of k
in the exponent. The reason, of course, is that the creation of Ryy in the purely local
formulation con®nes the inertial resistance to growth to the mass within the mixing layer itself.
In reality, as described above, the mass that must be set in motion extends well beyond the
edges, so that Ryy can be expected to grow with a much reduced exponent for structures that
are large compared to W, i.e. for kW<<1. Thus this local formulation preserves the spectral
structure of Ryy(t=0).

With nonlocality of Q( y 0, y), the turbulence-transport results account for the added inertia
and give the classical exponential growth. As a practical consequence, the behavior of TMZ
growth and appearance is signi®cantly altered; as a conceptual consequence, the in¯uence of
low wave numbers on self-similarity is quite di�erent from that of the purely local theory. The
nonlocal formulation does not preserve the spectral structure of Ryy(t=0).

To demonstrate the remedial e�ects of including the nonlocal pressure-wave propagation, we
return to the equation for Ryy, Eq. (A5), which is rewritten as follows:

@Ryy

@t
�

��1
ÿ1

Syy�y0�k exp�ÿ2k j y0 ÿ y j�dy0 �A11�
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where

Syy�y� � 2ay
@ �p

@y
�A12�

To isolate the essence of our demonstration, it is su�cient to consider, for y>W/2, the
approximation (an overestimation by choosing Syy at y=0)

@Ryy

@t
�

�w=2
ÿw=2

Syy�y � 0�k exp�ÿ2k j y0 ÿ y j� dy0

� �Syy�y � 0�=2� exp�ÿ2ky��exp�kW� ÿ exp�ÿkW�� �A13�
Twice the integral over y 0, for W/2E y 0<1, thus gives the total amount of Ryy created per
unit time outside of the TMZ, which accordingly is

@

@t
Ryy�outside� � �Syy�y � 0�=k��1ÿ exp�ÿ2kW�� �A14�

The total amount created per unit time everywhere is (because of the normalization of Q) the
same as the total amount due to the local-theory, namely Syy( y=0)W. Thus the nonlocal
prediction for total Ryy created inside the layer per unit time is

@

@t
Ryy�inside� � Syy�y � 0�W 1ÿ 1ÿ exp�ÿ2kW�

2kW

� �
�A15�

For kW<1, we expand the exponent to get

@

@t
Ryy�inside�1Syy�y � 0�kW2 �A16�

Divide this by W to get, within the layer,

@Ryy

@t
� 2ay�kW� @ �p
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With this alteration the exponential growth for kW small becomes

Ryy � Ryy�t � 0� exp�t
���������������������������
2k j Drg j = �r

p
� �A18�

which now contains the essential dependence on k as seen in the solution to the classic linear
Rayleigh±Taylor analysis, Eq. (A10).

It is interesting to contrast our approach to nonlocal pressure-wave e�ects with the
technique employed by Demuren et al. (1994). They describe a procedure for `local di�usion
sources to be distributed over lengths of the order of the integral scale.' They implement this
technique into a nonspectral transport model and report that it `enabled the well-known free-
stream edge singularity problem to be eliminated.' To the extent that turbulence self-di�usion
receives contributions from the nonlocal triple-correlation terms that arise from pressure-
velocity correlations through Greens-function integral solutions, we agree that turbulence
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di�usion should be distributed nonlocally. This e�ect is physically visualized in a two-point
(spectral) formulation of the theory. To capture the e�ects of inertial response on the creation
of turbulence (and thus the Rayleigh-Taylor linear growth rate), we believe the principal
nonlocal e�ect must be as described by our Q( y 0, y) modi®cation to the di�erential-
acceleration term (and to the mean-¯ow shear coupling).

It is of interest to note the relation between this linear Rayleigh±Taylor analysis and the self-
similar analysis for the turbulence equations described in Article II. If there is a rich spectrum
of modes at t=0, then each will grow exponentially, then saturate, creating an envelope for
net growth of the fully nonlinear evolution (see Fig. 4).

This envelope has the quadratic behavior dictated by the dimensionality of acceleration, g. A
heuristic analysis of this process starts with the linear growth equation for amplitude, A, at
wave number k, and the density ratio, (r2ÿr1)/(r2+r1),

d2A

dt2
� kg�r2 ÿ r1�A
�r1 � r2�

�A19�

and replaces k by 1/S, where S is the currently dominant scale at which growth is occurring.
With self-similarity, S is a ®xed multiple of A; that is, S= bA. Then

d2A

dt2
� g�r2 ÿ r1�

b�r1 � r2�
�A20�

and

Fig. 4. Schematic to demonstrate the growth and saturation of initial perturbations of the Rayleigh±Taylor
instability.
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A � gt2�r2 ÿ r1�
2b�r1 � r2�

�A21�

If mode saturation were to occur when the magnitude of A is approximately 20% of S, then
we get A=[0.1(r2ÿr1)/(r1+r2)]*gt

2, which is consistent with the actually observed self-
similar behavior of a TMZ, for which experiments give a coe�cient of about 0.12.

Appendix B

B.1. Derivation of the advective-like term in the b-equation

The term in the b-equation which couples the gradients in the spectrum of ai to the gradients
in con®guration space of r can be derived by consideration of a particular advective-like term
arising in an exact b-equation. Consider terms of the following type (arguments are included
here for additional clarity):

Db�x1; x2�
Dt

� ÿ�n�x2� @r
0�x1�u00n�x2�
@x2n

� fother termsg �B1�

Clark and Spitz (1995) proposed the following model:

r0�x1�u00i �x2� � �r�x1�ai�x1;x2� �B2�
so

Db�x1; x2�
Dt

� ÿ�n�x2� @ �r�x1�an�x1; x2�
@x2n

� fother termsg �B3�

or

Db�x1; x2�
Dt

� ÿ�n�x2� �r�x1� @an�x1; x2�
@x2n

� fother termsg �B4�

We now change to a centered coordinate, x, and a relative coordinate r:

x � 1

2
�x1 � x2�; r � x1 ÿ x2 �B5�

Using a Taylor's series to approximate the mean single-point quantities at the center
coordinate gives:

Db�x; r�
Dt

�
X1
j�0

ÿ r1
2

@

@x1

� �j
�n�x�

( )X1
j�0

� r1
2

@

@x1

� �j
�r�x�

( )
ÿ 1

2

@an�x; r�
@xn

� @an�x; r�
@rn

� �
� f� � �g �B6�

Under Fourier transformation, this becomes
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Db�x;k�
Dt

� ÿ 1

2

X1
j�0

ÿ i

2

@

@k1

@

@x1

� �j
�n�x�

( )X1
j�0

� i

2

@

@k1

@

@x1

� �j
�r�x�

( )
@an�x; k�
@xn

�
X1
j�0

ÿ i

2

@

@k1

@

@x1

� �j
�n�x�

( )X1
j�0

� i

2

@

@k1

@

@x1

� �j
�r�x�

( )
iknan�x;k� � f� � �g �B7�

Now we focus our attention on the second line, letting

T�x; k� �
X1
j�0

ÿ i

2

@

@k1

@

@x1

� �j
�n�x�

( )X1
j�0

� i

2

@

@k1

@

@x1

� �j
�r�x�

( )
iknan�x;k� �B8�

or, expanded to second order:

T�x; k�1 �n�x� �r�x� � i

2
�n�x� @ �r�x�

@x1
ÿ �r�x� @�n�x�

@x1

� �
@

@k1
� 1

4

@�n�x�
@x1

@ �r�x�
@xm

@2

@k1@km

� �
iknan�x; k� �B9�

Now note that on an average over spheres in k-space, the ®rst and last terms vanish due to the
reality constraint for ai and the odd order of the powers of k. Thus

T�x; k�1ÿ 1

2
�n�x� @ �r�x�

@x1
ÿ �r�x� @�n�x�

@x1

� � �
@knan�x; k�

@k1

k2 dOk

�2p�3 �B10�

A model for the integral term could be�
@knan�x; k�

@k1

k2 dOk

�2p�3 1C0fBdln
@kan�x; k�

@k
� C0fB

@ka1�x;k�
@k

�B11�

so

T�x; k�1ÿ C0fB
1

2
�n�x� @ �r�x�

@x1
ÿ �r�x� @�n�x�

@x1

� �
@ka1�x;k�

@k
�B12�

Note that

�n�x� @ �r�x�
@x1
ÿ �r�x� @�n�x�

@x1
� �n2�x� @

@x1

�r�x�
�n�x�

� �
�B13�

so that

T�x; k�1ÿ CfB �n2�x� @
@x1

�r�x�
�n�x�

� �� �
@ka1�x;k�

@k
�B14�

where

M.J. Steinkamp et al. / International Journal of Multiphase Flow 25 (1999) 599±637624



CfB � 1

2
C0fB �B15�

The form of this term used in this report is equivalent to the above form.

Appendix C

C.1. Spectral behavior of the terms

As compared with decaying constant density homogeneous turbulence, the added di�culty
of inhomogeneity and variable density modify the spectral behavior of Rij. The additional
variables that are a consequence of the variable density, namely ai and b, also contribute to
altering the spectral shape of Rij. In this Appendix we examine the in¯uence that these
variables have on the spectra. We ®rst address the complexities associated with inhomogeneous
turbulence and then discuss the resulting alterations in the spectra by splitting the spectra into
two sections: (1) the high wave numbers, and (2) the low wave numbers. For each section we
identify the terms in the model that have the greatest in¯uence on the behavior of the spectra.
For each of the terms, we discuss how they interact with other terms in order to alter the
spectrum.

In this Appendix we show the basis for numerous deviations from simple self-similarity for
inhomogeneous variable density circumstances. Article II, nevertheless describes a possible set
of moment equations based on self-similarity. To proceed with this discussion, however, we
will comment on the speci®c ways in which we can characterize the spectrum associated with
the quantities of our model for variable density turbulence.

Here we state the general principal that we follow for this study based on our beliefs about
the nature of the attainment and subsistence of the structure of spectral self-similarity: the
entire evolution of spectral self-similarity is the direct result of a competition of processes that
drive a ¯ow. For the case of the decay of isotropic constant-density homogeneous turbulence,
the identi®cation of these competing processes is very simple and straightforward. For this
discussion we consider how the turbulent kinetic energy spectrum E, where
E= E11+E22+E33, is altered only by the transfer of energy among di�erent scales. This
transfer can be represented by the local di�usion model (Leith, 1967), which accounts for
cascade to higher wave numbers as well as the di�usion to both higher and lower wave
numbers. For decaying constant density isotropic turbulence, the transfer of energy through
the inertial range of the spectrum is conservative.

For constant density homogeneous anisotropic turbulence with a source, such as a
homogeneous shear, the balance between processes must also include the source, which in this
case is due to the presence of the E12 spectrum coupled to the mean ¯ow gradient. The E12

spectrum acts as a source to the E spectrum at the smaller wave numbers. Besnard et al. (1996)
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show that this is possible due to the fact that, for high wave numbers, the E12 spectrum goes as
k ÿ7/3 and the E spectrum goes as k ÿ5/3. Thus we have a source, namely E12, continuously
pumping energy into the E spectrum at the lower wave numbers, the conservative cascade of
energy to the higher wave numbers, and the ®nal decay of energy at the highest wave numbers.
The idea here is that, similar to the isotropic case, once an equilibrium is reached among the
di�erent processes, the energy spectrum assumes a self-similar time independent shape.

For inhomogeneous anisotropic constant density turbulence, such as a free shear layer,
additional features such as the di�usion, advection, and nonlocal sources to energy in physical
space signi®cantly complicate this balance of processes. With these additional features to the
¯ow, account must also be taken for the transfer of energy in physical space. The sources are
still predominately at the small wave numbers (i.e. large scales), and the sink is still at the high
wave numbers (i.e. small scales).

Anisotropy adds the remaining six components of the Reynolds stress tensor (or three,
taking advantage of symmetry) that do not contribute for the case of isotropic turbulence. This
feature of the self-similarity is di�cult to represent schematically. The coupling of these
components with one another and the exchange of energy that occurs between them also
complicate the competition of processes.

For ¯ows that contain a time-dependent source, the characteristic time for the di�erent
processes that are responsible for the transfer of energy becomes an issue. For example, if a
¯ow has reached a state of equilibrium between all of its competing processes that transfer
energy and the driver of the ¯ow undergoes some type of transient, then the rate of return to
equilibrium is governed by a competition between these characteristic times. The processes
must compete with one another until an equilibrium is reached and the ¯ow is once again self-
similar.

If we now allow the density to vary in the inhomogeneous circumstance, the competition
between processes becomes even more involved due to the transfer of energy between the
added functions that arise as a consequence of these density ¯uctuations. Referring to the
equations of our model, we see that b drives ai, which in turn drives Rij. Rij then feeds back
into b and ai through the cascade rates, drag, and the disordered driver of ai.

As an example of the spectral altering e�ects of inhomogeneity, consider the turbulent
viscosity, ut, which is present in the spatial di�usion terms. Letting j represent any one of the
transported turbulence variables, the turbulent viscosity appears in the model equation as

@j�k;x; t�
@t

� @

@xn
ut�� � �� @j�k; x; t�

@xn
� � � � �C1�

The turbulent viscosity can be modeled in either a local (in k-space) version, e.g.

ut�x; k; t� �
����������
kRnn

p
k

�C2�
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which maintains k-dependence; or any one of various types of nonlocal (in k-space) versions,
e.g.

ut�k;x; t� �
�k
0

�����������
k0Rnn

p

�k0�2 dk0 �C3�

and

ut�x; t� �
�1
0

����������
kRnn

p
k2

dk �C4�

the ®rst of which maintains k-dependence and the latter which is independent of k. The second
of the two nonlocal versions of ut is a consequence of considering the e�ect of all scales of the
turbulence on the random walk process associated with di�usion. This consideration renders
the turbulent viscosity independent of k. The ®rst version accounts for only the wave numbers
smaller than the point in the spectrum. The local version represents only the in¯uence on the
di�usive process due to eddies associated with the same wave number. A third version could be
suggested that would account for the action at all wave numbers larger than the wave-number
location, suggesting that it is the smaller turbulent structures that in¯uence the di�usive
process the most. This type of representation would also be dependent on k.

The point to be emphasized here is the nature of the modeling for the turbulent viscosity, i.e.
whether or not it is dependent on the wave number k (roughly associated with the size of the
eddies). For the case where ut is independent of wave number, the e�ective di�usion of the
transported variable will be a ¯ux proportional to the gradient that remains constant
throughout the entire spectrum. For this particular case, as shown in Eq. (C1), the di�usion
term has no explicit dependence on k so that @j/@t has the same spectral form as j itself,
resulting in no alterations of the spectrum due to the di�usion term. Since this sink/source is
independent of k, the di�usion term cannot be responsible for locally altering the spectra in
any way. Contrarily, if a version of the turbulent viscosity is used which renders ut dependent
on the wave number k, the variation in the di�usion for a given point in physical y-space for
di�erent magnitudes of k will alter the spectral shape of j. The variation in the level of
di�usion in physical space, y, for all the di�erent wave numbers e�ectively alters the
neighboring spectra resulting in di�erent spectral behaviors.

Thus, the two main e�ects due to the inhomogeneity are (1) lateral spectrum changes as we
move in y-space, and (2) the `inertial range' is altered even at the same point in y-space. That
is to say that not only the adjacent spectra are altered, but also the cascade ¯ux in k-space is
no longer constant in the `inertial range.' To illustrate this quantitatively, suppose that the
energy tensor, E, behaves like k ÿ5/3 through the inertial range. Then the local version of the
turbulent viscosity, Eq. (C2), will behave as k ÿ4/3 through the inertial range, and since the
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form of the di�usion terms in this model is that found in Eq. (C1), a quantity that behaves like
k ÿ9/3 through the inertial rage will be di�used to the neighboring locations in physical space.

In view of the above behavior, one may ask the question: does this behavior mean that we
have lost the type of self-similarity that has been observed for the case of decaying constant-
density homogeneous isotropic turbulence (Besnard et al., 1996)? The answer to this question is
probably not; a k ÿ5/3 spectrum will dominate a k ÿ9/3 contribution at higher wavenumbers.
We believe that the spectrum evolves to a self-similar shape. The important concept to
recognize here is the method used to detect a self-similar evolution of the spectrum and the
fact that kmax (the value of k at which the spectrum attains an extremum) exhibits spatial
dependence.

In the process of determining if a spectrum is evolving self-similarly, two things must be
done to a time sequence of spectral plots: (1) the magnitudes of the spectra are rescaled such
that the extremum of the spectra coincide; and (2) the positions of the spectra are rescaled in
such a way that all spectra attain their extremum at the same wave number. With these
rescalings, the spectra are said to be evolving self-similarly if a time sequence of spectra can be
made to overlay one another. The degree to which one may say that the spectrum is evolving
self-similarly is the degree to which the overlaid plots coincide.

To rescale spectra such that the maxima coincide, the value of kmax must be known. A
feature of this study is the recognition that kmax is a function of the spatial variable y. With
this identi®cation of a spatially dependent kmax, we can e�ectively rescale the spectra so as to
test for the self-similar behavior of the spectrum as functions of both y and t. This merely
amounts to a di�erent rescaling for each position in y-space through the mixing layer.

C.1.1. High wave numbers

We now examine an important characteristic of the ai spectrum at high wave numbers. It is
shown that as a consequence of the decay terms in the ai equation, the ai spectrum falls o�
much more rapidly for high wave numbers than do the spectra for either b or Rij. Since ai is
the principal source to both b and Rij, this behavior of the ai spectrum results in a source term
to b and Rij that is e�ectively localized to the lower wave numbers. This behavior of the source
term is closely aligned with the behavior of the source term due to a near-¯ow shear in a
constant density ¯ow as previously discussed in this Appendix.

The behavior of the high wave-number part of the ai spectrum is dominated by a
competition among four terms in the transport equation of ai. These four terms are the two
source terms, i.e. the bHp term and the RinHr/r

2 term, and the two drag terms, i.e. the
(Crp1k

2 ���������
anan
p

)ai term and the (Crp2k
���������������
kRnn= �r

p
)ai term. A simple analysis of the competing terms

in the transport of the ai equation shows that the high wave-number behavior of ai will either
vary as k ÿ11/6 or k ÿ7/3, depending on which drag term is dominating. Due to the lack of any
drag-like decay terms in the Rij and b equations, the behavior of these quantities is dominated
by the condition of nearly constant ¯ux in k-space, so that they scale very nearly as k ÿ5/3 for
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the high wave numbers (see Article II). To demonstrate the consistency of these conclusions of
ai for high wave numbers, we use the fact that the two source terms in the ai equation scale as
k ÿ5/3 and set up a balance among them and the decay terms. For this examination of the high
wave numbers, let us represent the vector component ai as some constant multiplied by a
power, m, of k, i.e. ai4ai,0k

m. Likewise, we can closely approximate Rij and b in a similar
fashion: Rij4Rij,0k

ÿ5/3 and b4 b0k
ÿ5/3.

With these expressions, the resulting balance among the source and decay terms on the right
side of the ai equation is

b0
@ �p

@y
� Ryy;0

�r2
@ �r
@y

� �
kÿ5=31 Crp1k

����������������������
an;0an;0k2m

p
� Crp2k

������������������������
kRnn;0kÿ5=3

�r

s !
ay;0k

m �C5�

From this expression, if the Crp1 term is dominating, the following balance must exist between
the exponents of k: 2(m+1)=ÿ5/3, from which we see that m=ÿ11/6. This is the expected
power of the high wave-number behavior of ai if the Crp1 term dominates the decay. If the Crp2

term dominates the high wave-number behavior then the following balance is established: 3/
2ÿ5/6+m=ÿ5/3, from which we see that the power law behavior for the high wave number
part of the spectrum for ai, becomes m=ÿ7/3. Numerically we observe this (see Article II) and
see that indeed it is the Crp2 term that dominates the decay process. (This dominance is also
observed in calculations that show considerable insensitivity to the value of Crp1 through any
reasonable variations of its magnitude.)

Now that we have established that for the self-similar regime, the high wave number for ai
goes as either k ÿ11/6 or k ÿ7/3, it follows that since b and Rij both go as k ÿ5/3 for high wave
numbers, ai is a source that is localized to the low wave numbers for both b and Rij, and the
assumption of cascade dominance for them in the inertial range is con®rmed. In this manner,
this situation is much like any anisotropic ¯ow. Since the source to both the b and the Rij

equation is localized to the low wave numbers, there is a region of nearly constant ¯ux through
the inertial range for both b and Rij allowing the spectrum to develop into a k ÿ5/3 scaling. The
¯ux is constant in this region for b.

We should note however, that if ut varies with k, then there is a possible modi®cation to the
inertial spectra for b and Rij arising from variations with k of the y-direction di�usive ¯ux (see
earlier reference in this Appendix).

Inversely, for high wave numbers, b creates ai in a k ÿ5/3 fashion across the inertial range.
However, as stated above, the drag terms of ai dominate in this region, which drives the
spectrum to a behavior more closely dominated by these drag terms.

C.1.2. Low wave numbers

We have seen the e�ective localization to small wave numbers of the source term to Rij and
b due to the decay terms in the ai equation. We now examine the low wave-number behavior
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of the sources to this model. We ®rst examine the source term to the Rij equation and discuss
the modi®cations resulting from the nonlocal extension to this term, which we have
implemented into the model. We then describe the low wave-number behavior of the source
terms to the ai and b equation and other terms that play signi®cant roles in the spectral
modi®cations at low wave numbers.

The main source term to the Rij equation is composed of the net mass ¯uxing velocity, ai,
coupled to the mean pressure gradient, i.e. aHp. The form of this term was examined in
Appendix A. Past authors of single-point and two-point models have treated this source term
due to the mean pressure gradient as a purely local term (Besnard et al., 1987, 1996; Andronov
et al., 1982). That is to say, the production of Rij at a point x is in¯uenced by the mean
pressure gradient only at that same position, x. Due to incompressibility, we know that
acoustic signals transfer the e�ects of the mean pressure changes virtually instantaneously
throughout the entire ¯uid, a global mechanism. In our model, in addition to the spectral
formulation, we also formulate this source term to Rij nonlocally in physical space (see
Appendix A). The formulation of this nonlocal source term is easier to specify for a spectral
model as opposed to a single-point model. The nonlocal spectral formulation is chosen to
agree with the known spectral behavior for Rayleigh±Taylor analysis at low wave numbers.
The additional information regarding length scales resulting from a spectral formulation
enhances our ability to capture the global e�ects due to incompressibility.

However, as compared with a local source term for Rij, a nonlocal source term does change
the spectral behavior of the model. The far-reaching e�ects of the nonlocal term, i.e. the
kvy 0 ÿ yv factor in the exponential of the Q-function as discussed in Appendix A, directly
modify the Rij spectrum and indirectly modify the ai and b spectra through the coupling to Rnn

in the local cascade rate and through the coupling to Ryy in the density gradient source term to
ai.

Here we examine the modi®cations to the spectral behavior of the model due to the nonlocal
source in Rij. We proceed by examining the two-dimensional ( y, k) shape of a purely local
source to Rij within the TMZ. Since ai is zero outside of the TMZ (no net mass ¯ux), the local
source, S L

ij( y, k, t) to Rij is likewise zero outside of the TMZ. We show the mechanism by
which the local source undergoes a spreading over physical space due to the nonlocal

Fig. C1. Schematic of the local source term across the TMZ as a function of y and k. The maximum source
corresponds to the wave number k1 where the spectrum of ai(k) attains an extremum.
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modi®cations to the local source S L
ij( y, k, t) where

SL
ij �y; k; t� � ai

@ �p

@xj
� aj

@ �p

@xi
�C6�

Fig. C1 gives a qualitative idea of the nature of the e�ects of a local source term on @Rij/@t.
The wave number k1 is the wave number at which ai attains its extremum. The TMZ is shown
as the horizontal strip. The drawings across the horizontal TMZ represent, qualitatively, the
relative magnitudes of the local source term in the Rij equation. The purpose of these sketches
is to depict the in¯uence of the spectral shape of ai on the source term to @Rij/@t. At k= k1,
the contribution to @Rij/@t of the source term has a maximum while it asymptotes to zero for
both the low and high wave numbers of the spectrum. Notice also that the local source term
asymptotes to zero at both edges of the TMZ.

We now describe the smearing (across physical space) e�ect that the incorporation of the
nonlocality has on the otherwise local source, S L

ij( y, k, t). The nonlocal source is written as

��1
ÿ1

SL
ij �y0; k; t�Q�y0; y; k; t� dy0 �C7�

We see that the source to Rij at point y receives contributions from S L
ij , the local term,

integrated over all space; and it is the Q-function that couples the global e�ects of SL
ij back to

the point of production. Since the Q-function has the form

Q�y0; y; k; t� � Q0�k; t� exp�ÿk j y0 ÿ y j� �C8�

it will be responsible for altering the shape of the spectrum due to the k dependence. (The
Q0(k, t) is a normalizing function which guarantees a global conservation of the source term
over physical space.)

If we ®rst examine only the form of Q( y 0, y, k, t) uncoupled from the source term, we see
that its spectral dependence results in very di�erent forms for large and small values of k.

Fig. C2 shows (qualitatively) the di�erent forms the Q-function will take for di�erent
values of k. The structural feature that is important to notice in Fig. C2 is the narrow base
width for large values of k as compared with the spread out structures for the smaller values of
k. When coupled to S L

ij , this feature represents the ability of the large structures of the ¯ow
(associated with small k) to reach out and in¯uence remote parts of the ¯ow while the
in¯uence due to the smaller structures of the ¯ow (associated with high k) remains highly
localized.

Now we couple the local source term, S L
ij( y

0, k, t) to the reaching term, Q( y 0, y, k, t) and
show how the coupling results in a smeared out nonlocal source, SNL

ij ( y, k, t), to @Rij/@t that
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extends past the edges of the TMZ in physical space. Fig. C3 represents this coupling for a
generic value of k.

As before, the smooth hump-like ®gure represents the local source (Fig. on top), and the
new feature to notice is how this local source is smeared out past the edges of the TMZ
(®gures on bottom). The points at the various y positions outside of the TMZ are used to

show the form of the Q-function. (Only a few points are included for clarity.) The point to be
made with Fig. C3 is that similar curves for Q exist for all values of y outside of the TMZ,
which become more narrow at the base for the larger values of k and widen at the base for
smaller values of k. As the integral in the nonlocal source term is performed, contributions are
made to @Rij/@t at positions that lie outside of the TMZ due to the Q-function `reaching' into
the TMZ.

Figs. C2 and C3 show the e�ect of coupling the Q-function to the local source term to create
a nonlocal source term. It is shown that as k gets larger, the width of the base of the Q-
function becomes more narrow hence retarding the ability of the nonlocal source term to reach
out past the edges of the TMZ. In this limit, the Q-function spreading has little physical basis,
and we require only that the result for large k reduce to the local source. Recall that the
extremum of the ai spectrum is at k= k1. The consequence of this feature of the ai spectrum is

Fig. C3. Schematic representation of the e�ect of the Q-function on the local source, SL
ij , to Rij(k) for a generic

wave number.

Fig. C2. Schematic representation of the shape of the Q-function. (Notice how the base in the y-direction becomes
more narrow for larger values of k.) The area contained by each curve is the same due to normalization.
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that the e�ective local source to @Rij/@t will be larger for the wave numbers near k1. The e�ect
of the nonlocality is to ¯atten the peak of the source near the middle of the TMZ and to
extend the source past the edges of the TMZ. The peak of the nonlocal source at the center of
the TMZ will always be lower than the peak of the local source due to the normalization

��1
ÿ1

Q�y0; y; k; t� dy0 � 1 �C9�

For small wave numbers, the resulting nonlocal source is spread out over a relatively greater
distance in physical space than for the larger wave numbers. This is to weight the nonlocal
in¯uence of the larger structures of the ¯ow. Thus, as we traverse the spectrum from k=0 to
very large values of k, the ai spectrum starts at zero, reach a maximum, and then asymptote
back to zero; the e�ect of the nonlocal Q-function on the source is to reach out to in®nity for
k=0 and asymptote to a local form for very large values of k. When coupled, these two
e�ects produce a source that: (1) is small in magnitude and extends well past the edges of the
TMZ in physical space for small values of k; (2) is large in magnitude and is more restricted in
physical space for intermediate values of k; and (3) is small in magnitude and completely
con®ned to the TMZ in physical space for asymptotically large values of k.

To summarize Figs. C2 and C3, examine Fig. C4 which compares the local and nonlocal
shapes of the @Rij/@t source term as a function of y for three di�erent ranges of k.

The three plots of Fig. C4 show both the local and nonlocal source as a function of y for
di�erent ranges of wave number. The main features of the plots are the decrease in the
maximum of the source due to the nonlocality and the distance the nonlocal source extends
past the local source as a function of wave number. These three plots of Fig. C4 can now be
used to identify spectral modi®cations near the center and edge of the TMZ. A vertical strip is
drawn through the edge of the TMZ as well as the middle of the TMZ ( y=0) to help identify
the spectral tendency as to how the nonlocal source term modi®es the spectral behavior of @Rij/
@t. The e�ect at the edge of the TMZ due to the nonlocality in the source term to @Rij/@t is an
increase in curvature for small wave numbers, an increase in the absolute magnitude of the
source as well as a migration of kmax to lower wave numbers. The e�ect at the center of the
TMZ due to the nonlocality in the source term to @Rij/@t is a decrease in the curvature of the
spectrum at the lower wave numbers, a lower absolute magnitude of the source at the
centerline, and a migration of kmax to higher wave numbers. This behavior is illustrated in Fig.
C5.

The information from Fig. C5 can now be used to determine qualitatively the e�ects of a
nonlocal source on the behavior of kmax through the TMZ. The local source produces a kmax

that is concave upward, as a function of y, consistent with the largest turbulent length scales at
the centerline of the TMZ (scale=1/kmax). The nonlocal source produces a kmax curve through
the TMZ that is concave downward, consistent with the larger turbulent length scales found at
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Fig. C4. Schematic to represent the di�erent structures through the TMZ of the nonlocal source term to @Rij/@t due
to the dependence of the nonlocality on wave number k.

Fig. C5. Schematic representation of the spectral modi®cations to the time rate of change of the Reynolds stress

tensor due to a nonlocal source term for: (a) the edge of the TMZ; and (b) the center of the TMZ.
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the edges of the TMZ. Inspection of Fig. 22(c) and (d) of Article II indeed veri®es this
behavior.

In the limit as k 4 0, the value of m is preserved at the initial magnitude. From the nonlocal
source term for example with Rnn going as km exp(2t

��������������������������������������������
kg�r2 ÿ r1�=�r1 � r2�

p
) for k su�ciently

small, this becomes, to leading order, km(1+2t
��������������������������������������������
kg�r2 ÿ r1�=�r1 � r2�

p
+ � � �), which shows the

preservation of km in the limits as k4 0 and also the emergence of a km+1/2 contribution in
the spectra from near k=0. This e�ect can only be visible if Cfb is su�ciently smallÐindeed
having a magnitude considerably less than that which is required for agreement with
experiment.

In summary, the nonlocal source term to Rij a�ects the spectrum di�erently as we traverse
the TMZ. Near the centerline of the TMZ the power, m, which dictates the power law
behavior of the spectrum, km, is decreased for the low wave numbers and only slightly changed
at the high wave numbers. Near the centerline, kmax migrates towards higher wave numbers.
As we move out towards the edge of the TMZ, the power m is increased for the lower wave
numbers, the higher wave numbers are only slightly a�ected, and kmax migrates to the lower
wave numbers. The nonlocal source term to Rij has a major e�ect on the components of that
tensor and are also felt indirectly on ai and b, principally through the alteration of cascade
rates.

Two more items that alter the spectra for the low wave numbers are the initial conditions of
b, i.e. the low wave-number initialization for the b spectrum and the Cfb term in the b
equation. The low wave-number behavior for the b spectrum and the Cfb are in constant
competition to determine the power law behavior for the low k parts of the spectra. Con®ned
within the b spectrum this competition is most apparent. The Cfb term is responsible for a
wave-like propagation of the b spectrum from high to low wave numbers. This e�ect will
increase the downward curvature of the b spectrum for the low wave numbers hence lowering
the power law, m, of the spectrum where b 0km for small k. Hence it is apparent that this
process will compete with the initial condition of the b spectrum since the spectrum is
continually migrating toward smaller wave numbers, thus allowing for a continual in¯uence of
the initial conditions. The e�ect of the Cfb term, however, is to always lower the value of m for
the low wave-number parts of the b spectrum. The outcome of the competition of these two
items then determines the low wave-number behavior for the ai spectrum that in turn
in¯uences the Rij spectrum.
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